
IXI SOFTWARE: OPEN CONTROLLERS FOR  
OPEN SOURCE AUDIO SOFTWARE 

 
Thor Magnusson 

Creative Systems Lab 
Department of Informatics 

University of Sussex 
Brighton, United Kingdom 
T.Magnusson@sussex.ac.uk 

 

 
 
 

ABSTRACT 
 
Sound has been liberated. The 20th century freed music 
from various compositional constraints and ideologies, and 
during the last decade we have witnessed a transformation 
in the way sound is organized in terms of composition, 
production, distribution and consumption. This paper is 
concerned with the production part of this complex 
structure and will describe some of the ideas, experiments 
and conclusions of ixi software over the last years. ixi has 
been building open interfaces to be used with open source 
audio programming environments. We will go through 
which cultural and technological changes have affected our 
work and describe the situation of audio programming as it 
appears to us today, as inventors of virtual screen-based 
instruments. 
 
Keywords 
Musical interfaces, virtual instruments, screen based 
intelligent instruments, open source, audio programming, 
OSC, open protocols, free sound. 
 
1. INTRODUCTION 
 
Much has been written and speculated about free music and 
open source recently by people of all ranks ranging from 
enthusiastic hackers to conservative music industrialists. In 
perpendicular to this discussion, I would like to explore the 
state of free sound (free as in free jazz but not necessarily 
free beer) after the advent of open source programming 
languages for audio and the ever more popular OSC (Open 
Sound Control) protocol.1  
 Over the last few years, ixi software has been 
experimenting with creating prototypes for screen-based 
instruments to be used with open source programming 
languages. We wanted to bridge the gap between physical 
instruments and controllers and the abstract programming 
environments which people use in their work. The idea was 
that we could represent sound or sound processing with 
graphical objects placed in a two dimensional space on the 

                                                                    
1 http://www.cnmat.berkeley.edu/OpenSoundControl/ 

screen. Such representation is helpful when organizing 
sound and working with the "hidden" and highly logical 
processes of the computer. Initially we created instruments 
that were closed applications, which musicians could use to 
import their own samples into and work with according to 
their own logic. Each instrument had its own mode of 
interaction design and explored different organizational 
structures. This paradigm worked for a while, but users 
continuously asked for further features and with the advent 
of the open source languages like Pure Data and 
SuperCollider2, it became clear to us that we should change 
the way we build our software. Instead of a self-contained 
instrument, we began creating open controllers that would 
send out OSC messages to the chosen audio programming 
language. This way, the ixi software became a simple and 
intuitive controller defining the events happening in a more 
integrated and complex sound engine that is hidden from 
view in performance, but open for change in the stage of 
composition. 
 
2. OPEN AND FREE ENVIRONMENTS 
 
The world of open source is an incredibly powerful force 
that is not only changing the current media economy and 
power balances but also more subtle and intangible 
elements such as aesthetical values. People choose to work 
with open source software for many reasons – usually 
practical, economical and political reasons – and the most 
obvious characteristic of open source communities is the 
spirit of helpfulness, culture of sharing and the feeling of 
belonging to a community of like-minded people. There is 
always help to be found, an openness to suggestions for 
change in the software, various (usually) democratic 
methods for choosing which features become accepted, and 
collaborative efforts made to solve conceptual or software 
engineering problems. 
 For all artists the choice of a tool is also a choice of 
a style. They are limited by the instrument of choice but the 
question for the computer musician becomes: who is 
defining those limitations on my expression? Typically the 
musician has a certain "sound" or style, but is that defined 

                                                                    
2 See: www.puredata.org and http://supercollider.sourceforge.net 



by the software that he or she happens to use? Would the 
style change significantly if they were to use another 
software? As the honest answer to that question is likely to 
be a positive one, many musicians today are moving over 
to music software that is more open and transparent than 
the commercial software packages, themselves defining 
their own work processes and the scope of their 
instruments. People want to be in control and set their own 
limits when working in the creative fields.  
 Open source programming environments for audio 
such as Pure Data or SuperCollider are good examples of 
free and aesthetically open platforms. Both languages are 
relatively low level concerning musical concepts, but high 
level in relation to the mathematics and DSP that are 
required to synthesize or manipulate audio signals. In fact, 
you would have to search long and well to find any 
traditional musical concepts in Pure Data or Super-Collider. 
There are objects that translate MIDI values to cycles-per-
second or decibels to linear amplitude, but these are also 
electronic music concepts. These languages have been built 
on the premises of the functional needs of the task at hand – 
synthesizing or processing audio – and not on a cultural 
heritage like the western musical tradition. It is the 
hardware of the computer, lower level languages such as C 
or C++ and the programmers’ ideas of programming styles 
and environments that define the structure of these 
composition tools, not normative ideas about what music is 
or should be. [2, 3] 
 Composing music using Pure Data or SuperCollider 
is clearly exciting. One starts with a white page: a text file 
in SuperCollider and an empty white patch file in Pure 
Data. Only your own imagination sets the limits of 
expression. There is no timeline there, no preprogrammed 
reverb or delay effects, no sounds or samples or 
instruments. You compose your own music or instruments 
using the objects available and if you find you cannot 
express something, you can either write the object or unit 
generator yourself or ask for it to be done on the 
appropriate mailing lists. The act of musical composition 
and instrument making has become the same activity – 
manifested through programming. 
 
3. IXI CONTROLLERS 
 
Using open source programming languages for music 
points the attention of the musician to a field that ranges 
from the level of signal processing and the microstructure 
of a composition (where you work with the texture of the 
sound) to the macrostructure of the music, i.e. how musical 
events happen in time. The sound programming 
environments under discussion are open and flexible for 
almost all known synthesis and compositional techniques 
we use today, but the feature that we have found missing is 
the power to develop interesting and visually pleasing 

graphical user interfaces as part of the audio work.3 We are 
interested in the study of actions – the performance – of a 
musician when he or she is using an acoustic or digital 
instrument in a studio or live performance. Our reason to 
build those interfaces is not the visual design, but the mode 
of interaction which they embody. Each of the ixi 
applications has a different interaction structure, which 
allows the musician to do certain things – such as 
automation or adaptation – that might not be easily 
performed by using a different controller. 
 With the OSC protocol, we are now able to create 
controllers that are open in their application. These screen-
based virtual controllers are pattern generators whose 
output can be mapped to all levels of musical composition 
from the micro- to the macro-level. On the contrary to most 
MIDI controllers, there need not necessarily be any musical 
reference to the things that are happening at the interface 
level of the controller. We could have graphical objects 
such as agents, wheels, boxes, pickers, etc. that represent 
the events happening, and these objects are not necessarily 
taken from the world of music. In fact we would rather not 
use such visual metaphors, as they contain too much history 
and aesthetic implications. For us, the beauty of OSC is 
precisely the fact that it is an open standard, and does not 
incorporate a certain musical tradition like MIDI does.4 
 
3.1 Case Studies 
3.1.1 SpinDrum – SpinOSC 
 
SpinDrum is a good example of the paradigm shift (if we 
are dramatic enough to call it so) we underwent in ixi 
software from instruments to controllers. 
 

 
Figure 1. Screenshot of SpinDrum. 
 
The initial prototype of SpinDrum was built as a standalone 
                                                                    
3  As it is not the objective of Pure Data or Supercollider to do drawing- 

based graphical programming (although there are interesting video and 
OpenGL libraries for Pure Data, they are not very practical when 
building complex interfaces) we have had to come up with different 
techniques to make this technology possible. 

4 Arguably MIDI is not very practical for certain musical cultures whose 
music is more microtonal or polyrhythmic. 



application where the user would import samples into the 
software and then work with them according to the logic of 
the graphical interface. The instrument consists of rotating 
wheels, with variable number of pedals, which trigger an 
assigned sound file whenever they reach the top position 
(12 o'clock). The speed of their rotation is controllable. 
Therefore, manipulating and changing the rotation 
properties of the wheels can result in exciting polyrhythmic 
structures. The wheels’ size represent the amplitude of the 
sounds and the vertical and horizontal location represent 
the pitch and panning respectively. The user can easily add, 
move or delete wheels making the instrument quite 
spontaneous and easy to use in a live performance. 
 This was all well and good, but the strength and 
openness of OSC could easily be applied to the SpinDrum 
application and therefore we rewrote it to become an OSC 
controller. The SpinOSC has more or less the same 
interactive functionality as the SpinDrum, but now the 
output is not sound but OSC control messages that are 
constantly sent from the application to the receiving sound 
engine which can be built in any language or environment 
that supports OSC. We have had reports from people who 
have used it successfully with Max/MSP, Reaktor, Pure 
Data and SuperCollider. 
 
3.1.2 Picker 
 
Picker was the first OSC application we made. It was based 
on the notion that for creating generative music, regular or 
"real world" numbers are more interesting than purely 
random numbers for generating sounds and controlling 
musical patterns. Not only should those "real world" 
numbers be understandable and intuitive, but also easily 
controlled. The idea is that having an interface with a 
picker that picks up the RGB colors and its own location 
and sends this information to a receiving OSC sound 
engine is a useful tool. As the color background and the 
picker can be animated, interesting patterns can be picked 
up and used in a musical composition or performance.  
 

 
Figure 2. Screenshot of Picker. 
 
 In Picker, the user can import video files and/or 

connect a web camera and blend those video streams 
together in various ways. Bitmaps can also be used as 
filters, layering up to four layers of bitmaps on top of each 
other with adjustable blend. The users can design their own 
graphical patterns – as animation or bitmaps – which are 
used to control the sounds. There are four pickers in the 
application and they can be taught how to follow a route or 
just move around the screen randomly 
 There isn’t any one way of using this application. 
We have seen people use it to control visuals rather than 
sound, others have created drone music, scale transitions, 
or perform filter and effect manipulation. It is just an open 
controller that can be used in any situation where such 
number streams and the easy control of them can be useful. 
 

4. TECHNICAL SETUP 
 
As mentioned above, we chose to use OSC because of its 
generality, its support in almost every programming 
language and its speed.5 OSC is much faster than MIDI and 
using the UDP protocol, transmitting information between 
computers on a network becomes an easy task. Another 
important factor is that one can send symbols, strings, 
integers, floating points and binary files which makes it 
more powerful and clearer than MIDI which only deals 
with integer numbers. 
 All mapping is much easier with OSC than with 
MIDI. A typical OSC message has address structure like a 
Unix file-system or the URL file system people are used to 
on the Web. As the OSC is built around a client-server 
architecture, the client will send an OSC message with an 
address which correlates to the address space on the server. 
[4] In our case, the ixi application is the client and a patch 
written in SuperCollider or Pure Data is the server.6 [1] As 
the ixi controller has a certain logic to it, which is 
predefined, the OSC information it outputs is hardcoded, 
i.e. the user cannot change the names or variable scope of 
what he or she is receiving. But that is not a problem as this 
information can be translated and mapped appropriately on 
the server side.  
 We can take Picker as an example. The OSC 
information that is being sent out from picker looks like 
this: [/picker1, red, green, blue, x, y] where "red", "green", 
etc. are variables of color and location picked up by the 
picker. This message is then bundled with the other picker 
messages and sent through OSC to the server, which 
decodes the bundle and routes the picker information to 

                                                                    
5  MIDI can send around 4000 bytes per second whereas OSC, using a 

10Mb/s Ethernet network can send around 1.250.000 bytes per second. 
6  It becomes a bit more complicated with Supercollider as the SC Synth is 

a server on its own and the SClang is a client of the SC Server. The 
language and the server communicate with OSC. We usually need to 
talk to the SClang, so it serves both as an OSC server for the ixi apps 
and as a client to the SC Server. 



their desired mapped functionality. Thus one picker can 
control pitch where the next controls filtering or all control 
their own synthesis elements. There are infinite ways of 
building a sound engine that receives the picker 
information. The Picker is a limited controller, it cannot be 
changed and it is not modular, but the way it can be used 
has no limits.7 
 Currently we are mainly using Python and Java to 
write the ixi software,8 the main reason being that we want 
to work in a language where the act of programming is 
more like sketching or prototyping, i.e. a quick way of 
mocking up an example of a working idea which can be 
explored and tested out with a sound engine. It took us long 
time to come to this solution, but it made sense for us not to 
code for any specific programming environment (like 
SuperCollider, Pure Data or Max/MSP), but rather keep the 
applications open for use in all platforms and for all 
environments. Using Python and Java, it also becomes 
much easier to port our applications for the Mac OS X, 
Linux and Windows platforms. 
 

5. CONCLUSION 
 
The codes of the western musical tradition underwent many 
transformations in the 20th century and many would argue 
that the remains are only ruins. That is a positive situation 
in our view, as from chaos structure arises. We find that the 
commercial software of today does not reflect this situation 
well and argue that the open source programming 
environments and the open protocols of OSC serve well as 
an important addition to the general environments that 
contemporary musicians and composers need. These 
environments have been taken into use by a wide range of 
people from academics to DJs who use them in their own 
way. Each culture brings something new to the 
environment technically (externals, classes, code libraries) 
and aesthetically (as new uses or ideas can spread with the 
tools used to perform them) thus cross-influencing the work 
of each other. As post-modernist theory illustrates, the old 
distinction between "high" and "low" culture has been ever 
disappearing. This becomes even clearer in practices where 
the distinct cultures are using the same tools for their 
cultural productions, and that is a recent change with few 
historical cultural examples. 
 Software such as SuperCollider and Pure Data are 
fantastic compositional tools and workshops for the 
creation of musical instruments. What we find lacking 
                                                                    
7 The idea of modularity has been with us from the beginning, i.e. to create 

software where the user sets up the functionality of the application and 
the interactivity, but that is a project for later time as we’d rather spend 
our time exploring basic interactive structures first. 

8 We use the OSC library by Daniel Holth for Python 
(http://wiretap.stetson.edu) and the Java implementation by 
Chandrasekhar Ramakrishnan (http://www.mat.ucsb.edu/~c.ramakr/ 
illposed/javaosc.html). We also use Processing in workshop situations. 

when working with those environments is the possibility to 
represent musical patterns visually and create intuitive 
spontaneous instruments in forms of graphical user 
interfaces that allow for quick reactions in a live situation. 
We decided to use OSC in our instruments as we were 
interested in our software being able to function on most 
coding platforms and for the generality of OSC itself. Such 
instruments can supplement physical instruments and 
interfaces, and they can also contain functionality, which 
the physical instruments or controllers don't have, such as: 
memory, automatic repetition, hypercontrol9, machine 
learning, adaptive qualities, artificial life, genetic 
algorithms and artificial intelligence. There is a vast space 
open where the screen based instrument with its non-tactile 
but visual feedback can be explored for the benefit of 
musical performance and composition. 
 

6. ACKNOWLEDGEMENTS 
 
ixi software is a collaboration between Enrike Hurtado 
Mendieta, Thor Magnusson, David Bausola and many 
musicians and beta testers who give us valuable feedback 
and ideas for further development. Many thanks to Chris 
Thornton for inspiring talks and I would also like to thank 
The Media Centre in Huddersfield, UK and Buchsenhausen 
in Innsbruck, Austria for a nice residency programmes 
which we have had the pleasure of experiencing. 
 

7. REFERENCES 
 
[1] Thompson, John, “Network Communication with 

SuperCollider 3 Synthesis Servers via OSC: Musical 
Implications of High-bandwidth Networks”. February 
2005, weblocation: 
http://www.uweb.ucsb.edu/~johnt/Java_SC3.html 

[2] McCartney, James. “Rethinking the Computer Music 
Language: SuperCollider” in Computer Music Journal, 
26:4, pp. 61-68, Winter 2002. MIT Press 2002. 

[3] Puckette, Miller. “Using PD as Score Language” in 
Proceedings ICMC 2002. Pp. 184-187. 

[4] Wright, Matt. “OpenSound Control: State of the Art 
2003.” Published in the NIME 2003 Proceedings. 
http://www.cnmat.berkeley.edu/Research/NIME2003/
NIME03_Wright.pdf

                                                                    
9  By “hypercontrol” I mean structured, branched mapping from a higher 

level control to a web of lower level control-elements.  


