
NicheWorks—Interactive Visualization of
Very Large Graphs

Graham J. WILLS

The difference between displaying networks with 100–1,000 nodes and displaying
ones with 10,000–100,000 nodes is not merely quantitative, it is qualitative. Layout
algorithms suitable for the former are too slow for the latter, requiring new algorithms or
modified (often relaxed) versions of existing algorithms to be invented. The density of
nodes and edges displayed per inch of screen real estate requires special visual techniques
to filter the graphs and focus attention. Compounding the problem is that large real-life
networks are often weighted graphs and usually have additional data associated with the
nodes and edges. A system for investigating and exploring such large, complex datasets
needs to be able to display both graph structure and node and edge attributes so that
patterns and information hidden in the data can be seen. In this article we describe
a tool that addresses these needs, the NicheWorks tool. We describe and comment on
the available layout algorithms and the linked views interaction system, and detail two
examples of the use of NicheWorks for analyzing Web sites and detecting international
telephone fraud.

Key Words: Dynamic graphics; Exploratory data analysis; Graph layout; Networks.

1. INTRODUCTION

NicheWorks is a visualization tool for the investigation of very large graphs. By “very
large” we mean graphs for which we cannot look at the complete set of labeled nodes
and edges on one static display. Typical analyses performed using NicheWorks have
between 20,000 and 1,000,000 nodes. On current mid-range workstations, a network of
around 50,000 nodes and edges can be visualized and manipulated in real time with ease.
Increased size decreases interactive performance linearly. NicheWorks allows the user
to examine a variety of node and edge attributes in conjunction with their connectivity
information. Categorical, textual and continuous attributes can be explored with a variety
of one-way, two-way, and multidimensional views.

NicheWorks was designed to examine large telecommunications networks, and has
been applied extensively to understanding calling patterns among telephone customers
both for customer understanding and fraud detection. In this domain, information about

Graham J. Wills is a Member of Technical Staff in the Software Production Research Department (Data
Visualization Group) of Bell Laboratories, Room 2F-323, Shuman Boulevard, Naperville, IL 60566 (Email:
gwills@research.bell-labs.com).

c1999 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 8, Number 2, Pages 190–212

190

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 191

the customer (type of service, geographical location, etc.) and the calls they make
(date, time of day, duration) need to be understood in the context of who calls whom.
NicheWorks was developed to examine such inter-relationships. Typical questions that
NicheWorks was designed to answer deal with clustering users based on their calling
patterns and collected statistical attributes; detecting and characterizing atypical calling
patterns; understanding how an interesting subset’s calling patterns differ from those of
the whole; and identifying individuals who have been classified into a given category by
a purely data-driven algorithm, but who do not appear to fit that category based on their
calling patterns.

Since its inception, a number of data sources have been analyzed by NicheWorks,
and NicheWorks has been adapted and modified into a general purpose tool. It has been
applied to a variety of different problem areas, including:

� Relationships between functions and files in a large software development effort.
Here the goal is to understand not only functional relationships between parts
of a very large software system, but how changes made to one part impact the
other parts. By examining modification history we can create links between files
indicating their degree of “co-modification.”

� Web site analysis. Navigation is one goal of Web analysis; another is simply to
allow the user to understand how a site is laid out. A Web crawler (also known
as a “spider”) is used to gather the connectivity information. This information is
then assembled into a graph and visualized via NicheWorks.

� Correlation analysis in large databases. In looking for patterns in a database
consisting of more than 4,000 fields for around 80 million records, it is helpful
to have some way of summarizing the variables’ relationships to each other.
Using NicheWorks to display standardized correlations allows the user to get a
first look at an intimidating number of variables and see how they are related.
This correlation analysis is strongly related to the graph-based statistical analysis
method known as conditional independence graphs, or, confusingly, graphical
models (Whittaker 1990). With NicheWorks we sacrifice the “conditional” part
of the dependency information (showing simply raw correlations) for the ability
to handle large numbers of variables.

This article is intended to describe both the methodology behind NicheWorks and
our general approach to visualizing large, complex datasets; in this case, weighted graphs.
Section 2 will give a brief overview of the tool, with Section 3 detailing layout algorithms
and Section 4 the interactive interface. Sections 5 and 6 present examples of the tool
being used to analyze some real-life data and Section 7 summarizes our findings.

2. OVERVIEW

The NicheWorks tool is part of a suite of visualization views that has been created
by the Bell Labs Visualization Group for interactive analysis of large datasets. It shares
a number of features with its sibling tools (e.g., SeeSoft; Eick 1994), including:

192 G. J. WILLS

� Ability to show or hide parts of a graph via manipulation of views of node/edge
attributes.

� Tools to color nodes and edges based on their attributes.
� Drag and drop interactive mapping of attributes to shapes and labels.
� Selective labeling of nodes under user control; also painting of nodes with labels.
� Interactive data interrogation via the mouse.

These capabilities are shared by all tools in the linked views environment and their
use is discussed in Section 4. There are also methods specific to graph analysis that are
incorporated into the NicheWorks view. These include:

� Automatic selection propagation from nodes to edges and vice versa.
� Selection propagation within a graph by following edges (one step or connected

component).
� Interactive pan/zoom and rotate facility.

A typical session with a new dataset starts with the data definition stage. Tables of
nodes and edges with associated data attributes are loaded into the tool. An initial layout
algorithm is selected and the user can map data variables to the available node/edge
attributes. The weight attribute for edges is the only one that will affect the layout
algorithm; the others provide visual information only. The user can also tell the program
to regard edges between nodes as directed or undirected.

The user can then select one of several available iterative algorithms to use to
improve the layout; the user also allocates the amount of time allowed for these to run.
While laying out the data, the user can continue to change attributes, re-draw the graph
at intermediate stages, show or hide parts of the graph, and even change the weighting.
Finally, the user can save the positioning results for later use.

3. LAYOUT

Among others, Coleman (1996) gave a list of properties toward which good graph
layout algorithms should strive. The list includes notions of clarity, generality, and ability
to produce satisfying layouts for a fairly general class of graphs. Speed is also a criterion.
We want our algorithms to lay out very large general weighted graphs, producing a
straight-edge layout that reflects the edge weightings and that places nodes close to other
nodes to which they are similar. Di Battista, Eades, Tamassia, and Tollis (1994) gave four
aesthetics that are important for the general graph case. Since our layout is straight-edge,
we trivially satisfy the aesthetic of avoiding bends in edges. Instead of keeping edge
lengths uniform, we wish them to reflect the edge weights; our algorithms generally try
to set the edge lengths inversely proportional to the weights, so that the strongest linked
nodes are closest together in the ideal layout. Due to the computational cost of multiple
edge-crossings detection, we elect to ignore the criterion that edge crossings should
be minimized, trusting that our algorithms will produce good results without directly
involving a measure of edge-crossings. Since we wish to show clusters of nodes and
discriminate nodes far from such clusters, the aesthetic of distributing nodes evenly is

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 193

not obviously useful, and we relax it considerably; usually adopting only a final polishing
algorithm to move overlapping nodes a small amount. A last point worth making is
that algorithms that are particularly good at displaying symmetric or planar/near-planar
graphs (e.g., Harel and Sardas 1995; Kant 1993) are of limited value in our domain.
Large weighted graphs are rarely close to planar or symmetric.

There are two types of algorithms used for laying out graphs in NicheWorks. First, an
initial layout (Sec. 3.1) is chosen. This initial layout should be fast, capable of laying out
up to a million node graphs in a few minutes, so only simple algorithms should be used.
The user may then choose to improve the graph layout with one or more incremental
algorithms (Sec. 3.2).

In the following discussion, algorithms are run on each connected component of the
graph. The final layout is achieved by placing the components close to each other, with
the largest in the center. The algorithm currently in place for this stage is rather naive—
components are represented by a circle sufficiently large to encompass the component.
The circles are then laid out using a greedy algorithm that places the circles as close as
possible to the center of the display in decreasing order of size. Figure 8(a) shows the
limitations of this approach. A better approach would be to represent the components
by their convex hulls and run an annealing algorithm that would move and rotate the
polygons until they fit together more compactly. Since there are usually relatively few
components compared to the number of nodes, this stage should take only a small per-
centage of the total fitting time. This is not yet performed in the current version of the
tool.

On an implementational note, we use any available parallel machine architecture to
process each component separately. This is trivial to implement as no synchronization is
necessary until all the components are placed together at the end.

3.1 INITIAL LAYOUT

The currently available initial component layout algorithms are:

� Circular layout—Nodes are placed on the periphery of a single circle.
� Hexagonal grid—Nodes are placed at the grid points of a regular hexagonal grid.
� Tree layout—Nodes are placed with the root node in the center, then each con-

nected node is put in a circle around that. The spacing between nodes reflects the
number of nodes in the subtree originating from that node.

The first two layout algorithms simply place the nodes at random locations either
on the circle or on the grid. The tree layout algorithm was inspired by the cone-tree
3-D visualization method for large hierarchies (Robertson, Mackinlay, and Card 1991)
but avoids the occlusion problem induced by a 3-D visual system while still easily
coping with the size graphs typically displayed in cone tree examples. Di Battista et al.
(1994) gave other examples of radial layout algorithms of which this is an example. The
tree layout algorithm is designed to work for (surprise) trees, but also works well for
directed acyclic graphs (DAGs) and has proved to be useful for both general directed and
undirected graphs. In the latter cases we find the source of the graph by working inward

194 G. J. WILLS

9 0

5 4

3 6

R S

T

U

V

Figure 1. Radial placement.

from the leaves until we find the center-most node(s). If there are multiple sources, the
algorithm creates a fake root node as parent to all the real root nodes and lays out this
enhanced graph.

0The algorithm creates a tree from the enhanced graph by creating a subgraph G ,
initially consisting of just the root node. An iterative scheme is performed whereby all

0 0nodes that are one step away from G are added to G , along with the strongest weighted
0 0edge from that node to G (i.e., if there are two edges connecting G to a node, we choose

the edge with the strongest weight). This builds up a tree on the graph and terminates
when all the nodes are added. A naive implementation of this algorithm runs in O(DE)

time. (In this article, N is the number of nodes, E the number of edges, and D represents
tree depth.) Each node is then labeled with the size of its subtree (leaf nodes only). A
variable indicating subtree angle is also attached to each nonleaf node.

The root node is positioned at the center and given an angle of 360 degrees. This
indicates the angular span of its subtree. We then perform the following iterative layout
method:

For each of the leaf nodes of the positioned graph, we divide up the angular span
available to its subtree using the size of each of its children’s subtrees as weights. Thus,

0if we had a node with angle 20 and three children with subtree sizes 3, 2, and 5,
the respective angles allotted to them would be 6, 4, and 10 degrees, respectively. The
children are placed on a circle with radius proportional to their distance from the root
node and are placed at the midpoint of their individual angular ranges, with their parent
in the center of the overall range (complying with a common criterion for hierarchical
layouts mentioned in, e.g., Coleman 1996). An example is shown in Figure 1. The root

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 195

node (R) is drawn at the center, with its children on a circle centered at R of radius l. R
has a subtree of size 20 and its child S has a subtree of size 10, so S acquires an angular
span of 360 � 10=20 = 180 degrees. Its child T with subtree of size 5 gets a span of
180 � 5=10 = 90 degrees, U gets 180 � 2=10 = 36 degrees, and V gets 180 � 3=10 = 54
degrees.

This process continues until all the nodes have been positioned. The order of placing
subnodes around the circle is the final element requiring definition. We have decided on
the approach of placing the strongest weighted edges from a node to a child node in the
center of the span, with the weaker ones to the edges. Thus, the child with the strongest
edge to its parent will be in the center of the range. This works well with a principle
used in the iterative algorithms of Section 3.2, that the shortest edges should indicate the
strongest weights.

In practice we have found that a slight modification to this algorithm that does
not use all the available angle to place children improves the layout. The slight loss in
available space is more than offset by the improvement in the visible separation between
subtrees.

3.2 INCREMENTAL ALGORITHMS

There are three incremental algorithms available. In each case, the user defines a
potential function that describes the disparity between a weighted edge and the length of
that edge. The edge length should be inversely proportional to its weight, so that strongly
tied nodes are close together. Two of the more useful functions are a sum of terms of
the following form:

2(a) (1 � dw)

and

(b) j1 � dwj;

where d is the edge length and w is the edge weight. Each potential contribution is
minimized when d = 1=w. The difference between (a) and (b) can be seen if we add a
small perturbation to the optimal solution, making it instead d = 1=w+ � Then (a) gives

� � ��2 2 21 � w 1=w + � = w � ;

whereas (b) gives

j1 �w(1=w + �)j = w�:

So for a small absolute perturbation of the distance, (a) is more forgiving of minor
variations than (b), assuming a transformation of the weights. Note that one natural layout
method, multidimensional scaling (MDS) (Kruskal and Wish 1976) is inappropriate as it
minimizes

2(d� 1=w) ;

196 G. J. WILLS

2for which a perturbation of d = 1=w+� gives potential difference of � , completely ignor-
ing the weights, so that more irrelevant weak edges require the same precision of fitting
as do strong edges. When an MDS potential function was used in the NicheWorks algo-
rithms, it produced consistently worse layouts for graphs with differing edge weights—the
drawback has practical as well as theoretical problems.

An important point to note is that the potential is a function only of the graph
edges—if two nodes do not have an edge between them, then the distance between
them is irrelevant to the potential function. This characteristic ensures that the potential
calculations are fast, but has the substantial drawback that there is no force repelling nodes
from each other. One outcome of this is that nodes that are unconnected may be drawn
very close together if they are connected to similar other nodes with similar weights.
In some contexts this is a very useful characteristic. One case is when examining large
networks of phone calls to detect fraudulent calls; the grouping of telephone numbers that
have similar, unusual calling patterns but do not call each other is highly desirable. In
other contexts it is not so useful, and we have provided a specific incremental algorithm
to ameliorate the overlapping problem (Sec. 3.2.3).

3.2.1 Steepest Descent

For this method we consider the potential of the graph to be a function of the 2N -
dimensional vector of locations of its nodes. Moving the location of the graph in this
high-dimensional space is equivalent to moving every node in the graph simultaneously.
We calculate the gradient of this vector and want to move in that direction a suitable
amount. To decide how far to move, we take three small trial steps in the direction of
the unit gradient, using the potential at those locations to fit a polynomial of degree three
to the potential function in that direction. We then solve for the distance that minimizes
the fitted polynomial. Then we can move the configuration in 2N -space to the specified
point along the gradient direction. We terminate the algorithm when we cannot move in
any direction and improve our fit. The basic method is described for one-dimensional
functions in Burden and Faires (1985, chap. 9) and has been modified for our higher
dimensional problem.

This method works well when the initial position is close to a local minimum. It does
not require the initial configuration to be as close as is required for quadratic methods
such as Newton’s method, but it can take a long time to reach a good solution, especially
for very large graphs. For this reason we suggest that either a good initial placement
algorithm should be used, such as the tree layout, or that the simulated annealing swapping
algorithm (3.2.2) be run prior to this method.

This method is a relatively slow method, with each step requiring the calculation
of several gradient potential functions for offsets from the current location in 2N -space.
Although each calculation is of order O(E) so the order of the whole process is O(E),
the constant multiplier is quite high and our informal experience suggests that the numberp
of iterations required to achieve good results is around O(E) giving an overall orderp
of O(E E). Even for a million edges, this is not an overwhelming number, especially
since the gradient calculations can all be performed easily with coarse-grained paral-

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 197

lelism, providing up to a four-fold speed increase (fitting a polynomial of degree three
to the potential function in the optimal direction requires calculating the potential at four
different points, each of which can be performed in parallel).

3.3 SIMULATED ANNEALING SWAPPING ALGORITHM

This algorithm is designed to improve a random layout rapidly; it is especially useful
for random grid layouts. The algorithm randomly picks a pair of nodes and calculates the
difference in potential if the nodes were swapped. If the swap decreases the potential,
or if the increase is allowed by the annealing algorithm, then the nodes’ positions are
swapped.

The annealing schedule is based on the amount of time the user allocates for the
swapping routine to be run. Details of annealing algorithms in a graph layout context
can be found in Davidson and Harel (1996). They used an annealing approach to decide
whether to move a node to a new randomly chosen position, and we use annealing to
decide whether to swap nodes, but the process is conceptually very similar and much
of their discussion is appropriate for our algorithm. One important difference is in the
number of iterations and the cooling schedule. Davidson and Harel (1996) suggested
30N iterations, which is impractical for problems of our size. Instead our algorithms
prompt the user for the maximal amount of time to run the algorithm, and the annealing
algorithm uses the proportion of allotted time taken to reduce the temperature for each
iteration.

Calculating the effect on the potential of a swap is linearly dependent on the number
of edges involving either node. Sparse graphs are more common for large networks than
near-complete graphs, with the average degree of the nodes remaining nearly constant as
more nodes are added to the network (this reflects the author’s experience with a range
of different datasets; mainly telephony, software call graphs and modification histories,
and text document associations via n-gram analysis). Thus, the potential calculation is
typically very fast and can be performed many times. Because nodes can be moved
very long distances with one swap, this method is a powerful way of improving random
layouts rapidly.

3.3.1 Repelling Algorithm

The descent algorithm of (3.2.1) can produce layouts with nodes placed very close
to each other since it only uses inter-node distances if there is an edge between them. To
solve this problem, we introduced a last-stage algorithm—to be run a few times only—
which calculates the nearest neighbors for all nodes and then moves the closest ones
apart a small distance. Running this a few times will move overlapping nodes apart.

This algorithm uses a quad-tree with an implementation as described by Nievergelt
and Hirichs (1993, chap. 23.3); that is, O(logN) for all three operations of adding, delet-
ing, and calculating nearest neighbors. Thus, each step of the algorithm is O(N logN),
which is completely acceptable.

198 G. J. WILLS

Figure 2. Web site with nodes of type “link” highlighted.

4. INTERACTIVE INTERFACE

The interface to NicheWorks falls under the general classification of a linked views
environment, described in detail by Wills (1997) and Eick and Wills (1995) and imple-
mented at least partially in systems such as Velleman (1988); Wills, Unwin, Haslett, and
Craig (1990); Swayne, Cook, and Buja (1991); and Tierney (1990). Under this paradigm,
each view of the data is required to represent both the data themselves and a state vec-
tor that is attached to the data. This state vector indicates how each data point should
contribute to the view appearance. In our implementation the possible states are:

� Deleted—treat the data point as if it were not present
� Normal—show the data
� Highlighted—show the data so it will stand out against normal data
� Focused—show as much detail as possible on the data

Furthermore, the user should be allowed to modify the state vector by interacting
with the data views. For example, selecting a specific bar from a bar chart view and
highlighting it will change the data state vector for items represented by that bar, causing
other views of the data immediately to update their representation.

In NicheWorks there are a number of different options for displaying the graph using
the state vector, and for interacting with the graph. The crucial point is that nodes and
edges each have a state vector which must be taken into account when drawing the graph.
If an edge is highlighted, but each of its end nodes are deleted, should it be shown, and
if so, how? We have not performed solid user trials in this area, but our experience with
using the tool has led us to create a set of possible options, some of which are examined

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 199

Figure 3. Nodes with degree zero have been deleted and of the rest, nodes with type “query” have been
highlighted.

in this section. We use an example dataset consisting of a few hundred Web pages and
links between them to exemplify the approach. This dataset was collected by listing all
the pages near the top level of the author’s directory and feeding the references to them
to MOMspider (Fielding 1994) which uses references in those documents to search out
new pages on the Web.

Figure 2 shows the results of selecting only nodes labeled as “link” (a standard Web
page) in the default configuration. Selected nodes are drawn in a highlight color, with
unselected nodes in gray. Edges are only drawn from selected nodes to other selected
nodes. To create Figure 3, we created a histogram of the degree of each node (not shown)
and then used the mouse to select those of degree zero (i.e., those with no edges). We
then set their state to “deleted” as we are not interested in these degenerate components.
In the “Type” bar chart we then select the “query” type to see which links called query
routines.

There is an interesting component where all the child nodes are queries. In Niche-
Works we can move the pointer over those nodes so that as the mouse is moved over the
data the labels appear and disappear rapidly. We see that all the query nodes are searches
into a film database for various films, and the central node is called films96.html—it
looks like a page of film reviews.

Compare Figures 4(a) and 4(b) in which we have used NicheWorks to select only
one component and then hidden the others. In (b) we have hidden the unselected or
normal data—we see only those data that are highlighted. This can be very useful when
visualizing large graphs as it allows us to focus in on subsets of nodes or edges which

200 G. J. WILLS

(a) (b)

Figure 4. Option to show unselected links in gray on (a) off (b).

fulfill certain conditions. One commonly observed use among novice NicheWorks users
in the telephony domain is that they will hide all nodes (telephone numbers) except
those that make a large number of calls. After working with the usage patterns of these
high-runners, they will then broaden the scope of the exploration.

In Figure 5, we show how fairly complex queries can be posed naturally through
the linked views metaphor. In this figure we have changed the “Type” bar chart to a
Spineplot, where each bar has a fixed height and the width of the bar indicates its count.
Within each bar the darker area shows the percentage of selected cases within the bar
as a height. We have also created a bar chart of edge counts. This bar chart shows the
number of times a given URL refers to another URL (A “URL” is the address of a piece
of information on the Web). We have selected all counts above one—that is, all those
links to a URL from a URL that occur multiple times. This selection defines a subset of
highlighted edges which in turn highlights those nodes that are endpoints of the edges.
These are the nodes that either refer to the same URL more than once or are referred
to more than once by the same URL. The type bar chart and the NicheWorks view both
immediately show this result; we can see that images never have multiple edges to them,
regular pages sometimes do and queries do about half the time.

As well as selection mechanisms, the user can use attributes directly to encode
information onto the view. In Figure 6 we have zoomed in on a section of the site
showing a set of bookmarks and can see the arrowheads as well as the node encoding.
This graph has been defined as a directed graph. The nodes’ shapes have been coded by
type; regular URLs are squares, images are circles, and queries are diamonds. The color
represents the action taken by the Web spider on the node. Although they are hard to

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 201

Figure 5. Using edge statistics to highlight nodes and show the distributions of statistics for those selected
nodes.

distinguish in this gray-scale representation of the view, the darker gray represents pages
that were successfully accessed, and lighter grays represent ones avoided or ones where
access to them failed. We have also used the mouse to selectively label nodes.

4.1 SPEED CONSIDERATIONS

Research into human-computer systems has shown that if an operation is performed
sufficiently fast (under 200 ms for the average person), then it is perceived as being
instantaneously connected to the initiating actions. One important application for a graph-
drawing program is that using the mouse to zoom in or out and to pan around or rotate
the graph should have the graph being continuously re-displayed within this time period.
Failure to do this means the user will have difficulty manipulating the view. Of course,
re-drawing a million nodes and edges of varying shapes and colors within 200 ms is
impossible on most machines, and by the time it is possible, we will want to visualize a
billion nodes and edges. We need some partial-drawing solution.

A naive approach would be to start drawing at time t0 and continuously check the
time until we reach time t0+ 200 ms, then stop drawing. This has two drawbacks. First,
and less importantly, polling the time is a notoriously slow operation on most computer
systems, and checking more than a few times will degrade performance—exactly what
we want to avoid. The other failing is critical; if we adopt the naive approach for a
very large, dense graph which has a lot of overplotting, then the partially drawn graph is
guaranteed to look very different from the completed drawing. This is because the partial
drawing shows only those nodes and edges that lie below the ones that are usually drawn

202 G. J. WILLS

Figure 6. Node appearance details.

later and so appear on top.
For these reasons we adopt a different approach in NicheWorks. Using the results of

previous drawing times (number of nodes drawn and time to draw that many) we predict
how many items can be drawn within the next 200 ms. We then commence drawing
midway through the ordered list of items until we reach the end. This method ensures
that the picture is as similar as possible to the complete version.

The details of the prediction algorithm are quite complex, as it needs to be robust,
especially to the sudden spikes associated with processor sharing, and yet smooth, as we
do not want nodes and edges flickering as we zoom and pan. It must also be adaptive,
since as we zoom and pan we are actually drawing different numbers of nodes and
edges (the major source of delay time). We intend to deal with this algorithm in detail
in another article, but in brief the algorithm uses a robust moving regression model that
ignores the most extreme times in the moving average range. It simultaneously calculates
several different such models and uses past performance to decide which of the models
to choose for the current decision. Empirical results on UNIX X-Windows systems and
Windows/DOS boxes indicate that the prediction method works well, rarely overshooting
more than 50

4.2 IMPACT ON LAYOUT ALGORITHMS

The state vector can be very useful when laying out large graphs. If we set a node’s
state to deleted, then it plays no part of the layout process, nor do any edges involving it.
Thus, we can use the deletion mechanism to look carefully at subsets, trying layouts only
for them, or using partial layouts to speed up positioning a very large graph. An example
of the former is shown in Figures 7(a) and 7(b). In the former we have selected an
important Web page (a bibliography) and use the one step menu option twice to expand

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 203

(a) (b)

Figure 7. A subset of the Web site positioned as part of the whole site (a) and positioned as if it were the whole
graph (b).

the selection to nodes up to two steps away. The result is not very clear, so we delete the
unselected points and choose the tree layout option to arrive at Figure 7(b), which shows
the layout more clearly. We can see that the main page references three sub-pages, each
of which reference a number of other pages.

Another use of the state vector is to allow the user to fix the selected nodes. These
nodes are not permitted to be moved by any of the subsequent layout algorithms. This
allows the user to layout one subset of nodes, then fix their positions and use, for example,
the descent method to move the other nodes into the best positions relative to the fixed
nodes.

A final consequence seems trivial, but is very useful in practice. By showing only
the most important nodes and/or strongest edges, the user can watch the layout algorithm
perform without taking too much time away from the algorithm to display the data. This
helps the user understand the algorithm’s operation more clearly and thus aids the layout
process.

5. EXAMPLE: WEB SITE VISUALIZATION

The MOMspider Web crawler was used to search and index all Web pages accessible
from the author’s home page (with a few termination conditions limiting the depth of the
tree and preventing access to off-site pages). The resulting information totaled 733 pages
(nodes) and 758 links between pages (edges), not including the home page itself, which
was only used as a source of originating pages. A number of statistics were collected on
both nodes and edges, including number of times a link was referred to in a page. This
statistic was used for the weight. In this section we demonstrate how we use NicheWorks
to understand the structure of this fairly small site.

Figure 8 shows the layouts for each of our three methods. We also ran the swapping
algorithm for ten seconds on the hexagonal grid to achieve the layout. Each view shows

204 G. J. WILLS

(a) (b) (c)

Figure 8. Circle (a), hexagonal (b), and tree (c) layout methods for Web site data.

nine separate components of differing sizes. The circle layout does not look very promis-
ing as it shows the size of the clusters well, but not their structure. The tree layout hides
the size to an extent (e.g., consider the very dense cluster toward the bottom right) to
show structure better. The hexagonal grid method shows a bit of each. We run the move
algorithm for 10 seconds on the most promising two—the hex and tree layouts—to give
Figures 9(a) and 9(b). As might be expected, the two layouts appear fairly similar as far
as individual components are concerned. The tree layout followed by move appears best;
we will use it from now on.

There is an immediately noticeable pattern in several of the components; a central
node with connections to every other node in the component and no other edges. These
are collections of information with one index page referencing many others. Figure 6
in Section 4 shows part of one of these components; it is a list of bookmarked pages.
Although most of these “central node” components in Figure 9(b) are symmetrical, there
is one that is very asymmetrical at the top left. We zoom in on it and selectively label
the center node to produce Figure 10. When we set node shapes to indicate the type of
page or run the mouse over the outer nodes, we see that they are all queries for a database

(a) (b)

Figure 9. Results of the move algorithm for hex layout (a) and tree layout (b).

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 205

Figure 10. An asymmetrical component.

server, each query being a request for a film name. The different line lengths indicate
that some films are referred to more frequently than others from the central page.

This component was created to index a list of best films of 1996. A script was
run that identified all names in block capitals and added a link to the film database to
the document. Some films were mentioned only once (the ring of far away circles on
the right), others more often. Since simple components like this can be solved for a
zero potential, the distance from the central node is exactly inversely proportional to the
number of times the film is mentioned in the article. We use the mouse to focus on the
innermost nodes and note that The English Patient and Fargo are the most commonly
mentioned films.

We zoom in on the large central component in Figure 9(b) and label some represen-
tative nodes to give Figure 11. The central page here is the home page for the author’s
department (Software Production Research Department Home Page), with a ring of gen-
eral purpose pages around it, most of which are off-site and so are not accessed by the
MOMspider program. Two interesting exceptions are the “who.html” page, with its list
of images of people and links to their home pages, and a set of pages for ordering books
on-line using the local “bookbot” system.

Exploring Web networks is an emerging field. It is important for administrators
who want to ensure that there is a consistent and logical pattern in their site, and for
tracking visits to individual pages to see what types of path people are following. It is also
important for users navigating a site to see what is out there. The size of the networks and
their ad-hoc complexity make it a natural candidate for this form of network visualization.

206 G. J. WILLS

Figure 11. Department home page component. The user has hand-labeled some nodes representing interesting
or representative Web locations.

By adding information about the nodes (type, number of hits, number of modifications,
size, content flags) and edges (multiplicity, number of follows) the form of visualization
provided by NicheWorks allows the structure of the site to be understood in the context
of the data about it.

6. EXAMPLE: INTERNATIONAL CALLING FRAUD

Discovering fraudulent calls made to overseas locations is very important for tele-
phone companies. Not only do they lose revenue if they cannot collect money for a call,
but they also have to pay overseas telephone companies to use their equipment, resulting
in an actual loss of money. But telephone fraud is very resilient to automatic or data
mining techniques for detection. Fraudsters adapt very rapidly to new algorithms and
share their knowledge on preventive systems. For this reason a visual approach to fraud
detection is very effective; it exploits users’ ability to interpret and understand new pat-
terns in calls, allowing them to process more data and see new fraudulent methods. The
dataset in this section originally consisted of more than 20 million international telephone
calls over a weekend in 1994. This has been segmented by geographical origination, and
here we are investigating a moderate 40,000 calls involving slightly less than 35,000
callers.

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 207

Figure 12. Overview of calling patterns.

Figure 12 shows the results of the hex layout/swapping/movement algorithms. The
most noticeable feature is the number of callers clustered around each country; these are
people who called exactly one country, with the distance to the country indicating for
how long they were on the phone to it. The analyst then decides to look only at people
who made multiple calls (other possibilities might be to look at long calls only or to
look at calls to certain known international fraud hot-spots) and also trims the graph by
specifying only callers that spent more than a certain significant time on the phone. After
playing around interactively with various thresholds (static parameters are easily evaded
by experienced fraudsters) and various layout methods, Figure 13 was arrived at. The
analyst noted an interesting couple of callers who called both Israel and Jordan a lot.
By using the mouse to focus on the callers, and viewing the results in a linked view,
it appeared that each of the callers made more than 120 calls to Israel and more than
80 to Jordan. Zooming in (Figure 14) and labeling the nodes showed that not only were
their calling patterns very similar, but they also had very similar numbers (which have
been scrambled in this article). It is almost certain that these callers are part of the same
operation.

The fraud method they might be engaged in is a fairly elaborate one. At the time
of the study, it was impossible to call directly between Israel and Jordan. The fraudsters
would set up a phone account in a rented apartment in the U.S. and charge Israeli and

208 G. J. WILLS

Figure 13. High users’ calling patterns.

Jordanian business people for third-partying the call through to the other country. When
their bills came in at the U.S. end, they would simply ignore them and leave to set up a
new location. The distribution of durations of calls made by these numbers is consistent
with the investigator’s expectations for this type of fraud.

Looking at these callers in detail, the analyst noticed that they also called the United
Arab Emirates (UAE) occasionally. Following this line of inquiry, the analyst showed
all calls and callers involving any of these three countries (around 12,000) and produced
Figure 15(a), and, zooming in, Figure 15(b). By labeling interesting numbers the analyst
identified one number that called Israel for a long time and, importantly, a group of other
telephone numbers having similar patterns of calling to the original pair and having
numbers similar to each other. This set of numbers had much lower call volume, partly
because there were more phone numbers involved, and so were less easy to detect. Since
standard methods would not have noticed that the numbers were similar, they would not
have been able to identify this type of fraud.

Using the NicheWorks tool, the analyst was able to explore a medium-sized network
of more than 40,000 calls, using different criteria to selectively show different aspects
of the data and using different positioning methods to display the results to best effect.
The linking mechanism was used both to control the visible and highlighted data and
as feedback when interrogating the data using the mouse. In the end, the analyst was
able to spot a pattern based on a fairly easily detectable pattern of fraud (due to the high
volume) and customize the graph to show more possible incidences of this type of illegal
activity. This analysis was performed on an IRIS Indigo2, with interactive selection and

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 209

Figure 14. Possible fraud pattern involving Israel and Jordan.

display results and positioning algorithms taking a maximum of 10 minutes for the large
overviews.

7. CONCLUSIONS AND FUTURE WORK

Displaying and navigating very large networks is a hard problem. With current and
foreseeable limitations on display size and resolution, it is clear that labeled views of
complete large networks are impossible with static layouts. One approach which has
been tried is to use the two dimensional screen as a view on a three-dimensional layout
(e.g., Robertson, Mackinlay, and Card 1991; Sheelagh, Carpendale, Cowperthwaith, and
Fracchia 1996), but these methods have not shown themselves effective for large net-
works; indeed, since the layout can now be viewed from many angles, the problem is
worse in 3-D. Our approach is to provide a tool that allows the user to interact with the
weighted graph, making it possible to position and focus rapidly on different subsets of
the whole, thus building up knowledge about the entire graph. In our opinion, methods
for the following operations are essential:

� Defining a subset of the graph based both on graph structure and on values of
any available node/edge variables.

� Providing a range of robust layout tools suitable for different types of graph.
� Laying out subgraphs.

210 G. J. WILLS

(a) (b)

Figure 15. The Israel-Jordan-UAE generated subset (a) overview (b) zooming in to those callers calling more
than one country.

� Giving immediate and reversible control over mappings from data attribute to
node and edge attributes (color, size, shape, line style, etc.).

� Interactive labeling.
� Free and rapid ability to pan, zoom and rotate the graph in the viewing window.

The speed must be sufficient to make the action appear truly interactive.
� Means for the user to retrieve full details on nodes and edges.

We have described the NicheWorks tool and given an overview of the linked windows
environment in which it is embedded. The linked windows metaphor, in which a state
vector is attached to data tables for nodes and edges and is shared among different views
of the data, allows selection, deletion, and focus operations on data to be visible in the
graph structure and vice versa. The NicheWorks layout algorithms have been designed
to work well for large, weighted graphs and have been implemented so as to be robust
against slight data irregularities; for example, the tree layout method uses the “best” tree
within the graph, rather than assuming that the data must be a tree. The NicheWorks
graph view itself creates a self-calibrating predictive model for the amount of drawing
possible within a given time to allow maximally efficient, interactive panning, zooming,
and rotation. A number of selection tools and methods are available which have been
described elsewhere (Wills 1996).

The goal of NicheWorks is to allow the user to interact with large graphs; to allow
them to try ideas, focus on different aspects of the data, and to create views that spark
intuition. We have used perceptually good attribute encodings (Cleveland and McGill
1984, 1988) and expanded results by Tufte (1983, 1990) and Bertin (1983) into the
interactive domain. One of the most pleasing aspects of the project is that domain experts
with little or no graph-theoretic or statistical background can use it to gain knowledge

INTERACTIVE VISUALIZATION OF VERY LARGE GRAPHS 211

about graphs in their own area.
NicheWorks is an evolving tool; although the basic idea has remained stable for

several years, it is continually being improved and updated. It is available as a component
of a library of C++ linked data exploration tools for both Windows and UNIX. It is also
available as an ActiveX object. The commercial version is called “Data Constellations”
and is supported by Visual Insights (a Lucent Technologies venture).

Some recent thrusts which are in a prototype stage and some future areas we wish
to incorporate include:

� Networks with hierarchies. The ability to represent a set of nodes by a super-node
and collapse and expand them under interactive control is useful both when such
a structure is predefined and when the user interactively or semi-automatically
imposes one. Web pages and sites form such a hierarchy, as do software files,
modules and programs, international telecommunication data, and many other
transactional record systems. Methods of creating hierarchical information in-
clude graph clustering and hierarchy definition via node variables. Early efforts
to visualize hierarchical data were described by Eick and Wills (1993).

� Time series. Especially with transactional data, it is often necessary to look at
networks in the context of when edges were created, measuring evolution and
structure changes in graphs.

� Additional layout algorithms. Improving our existing algorithms and implement-
ing promising new ones which can be adapted for large graphs will always be
important.

� Parallel implementations. Several of our algorithms and many in the literature
are suitable for a simple, coarse-grained style of parallelism available on many
platforms. Without parallelization, datasets of up to about 100,000 nodes and
links can be explored slowly, and data sets of around 20,000 nodes and links
can be explored with ease on a moderate UNIX workstation. With six processors,
layout is four to five times faster. A fine-grained parallel implementation could
take advantage of many processors; this has not been attempted to date.

NicheWorks allows users to visualize weighted networks with hundreds of thousands
of nodes and edges. It combines statistical data views with graph layouts and visualization
methods from the computer science disciplines using an interactive linked views envi-
ronment. It is currently being used for a number of tasks including software analysis,
fraud detection, and document correlations. We welcome all comments and suggestions
as we continue to improve it to be better, faster, and ultimately more informative.

ACKNOWLEDGMENTS
The author thanks the referees for their helpful comments

[Received November 1997. Revised May 1998.]

212 G. J. WILLS

REFERENCES
Bertin, J. (1983), Semiology of Graphics, Madison, WI: University of Wisconsin Press.

Burden, R., and Faires, J. D. (1985), Numerical Analysis (3rd ed.), Boston, MA: PWS Publishers, Duxbury
Press.

Cleveland, W. S., and McGill, R. (1984), “Graphical Perception: Theory, Experimentation, and Application to
the Development of Graphical Methods,” Journal of the American Statistical Association, 79, 531–554.

(eds.) (1988), Dynamic Graphics for Statistics, Pacific Grove, CA: Wadsworth & Brooks.

Coleman, M. K. (1996), “Aesthetics-Based Graph Layout For Human Consumption,” Software Practice And
Experience, 26, 1415–1438.

Davidson, R., and Harel, D. (1996), “Drawing Graphs Nicely Using Simulated Annealing,” ACM Transactions
On Graphics, 15, 301–331.

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. (1994), “Algorithms For Drawing Graphs: An Annotated
Bibliography,” Computational Geometry, 4, 235–282.

Eick, S. (1994), “Graphically Displaying Text,” Journal of Computational and Graphical Statistics, 3, 127–142.

Eick, S., and Wills, G. (1993), “Navigating Large Networks with Hierarchies,” in Proceedings of IEEE Visu-
alization ’93, pp. 204–210.

(1995), “High Interaction Graphics,” European Journal of Operations Research, 81, 445–459.

Fielding, R. (1994), “Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider’s Web,” in
Proceedings of the First International Conference on the World-Wide-Web, Geneva.

Harel, D., and Sardas, M. (1995), “Randomized Graph Drawing With Heavy-Duty Preprocessing,” Journal Of
Visual Languages And Computing, 6, 233–253.

Kant, G. (1993), “Algorithms for Drawing Planar Graphs,” unpublished Ph.D. thesis, Utrecht University.

Kruskal, J., and Wish, M. (1976), Multidimensional Scaling, Sage University Series on Quantitative Applications
in the Social Sciences, Beverley Hills and London: Sage Publications.

Nievergelt, J., and Hirichs, K. (1993), Algorithms and Data Structures with Applications to Graphics and
Geometry, Englewood Cliffs, NJ: Prentice Hall.

Robertson, G., Mackinlay J., and Card, S. (1991), “Cone Trees: Animated 3D Visualizations of Hierarchical
Information,” in Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI’91),
pp. 189–194.

Sheelagh, M., Carpendale, T., Cowperthwaite, D., and Fracchia, F. D. (1996), “Distortion Viewing Techniques
for 3-Dimensional Data,” in Proceedings of IEEE InfoVis ’96, pp. 46–53.

Swayne, D., Cook, D., and Buja, A. (1991), “XGobi: Interactive Graphics In The X Window System With A
Link To S,” in American Statistical Association Proceedings Of The Section On Statistical Graphics, 1–8.

Tierney, L. (1990), Lisp-Stat: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics,
New York: Wiley.

Tufte, E. R. (1983), The Visual Display of Quantitative Information, Cheshire, CT: Graphics Press.

(1990), Envisioning Information, Cheshire, CT: Graphics Press.

Velleman, P. (1988), The Datadesk Handbook, Odesta Corporation.

Wills, G. (1996), “Selection: 524,288 Ways to say ‘This is Interesting’,” in Proceedings of IEEE InfoVis ’96,
pp. 54–60.

(1997), “Visual Exploration of Large Structured Data Sets,” in New Techniques and Technologies for
Statistics II, Washington, DC: IOS Press.

Wills, G., Unwin, A., Haslett, J., and Craig, P. (1990), “Dynamic Interactive Graphics For Spatially Referenced
Data,” in Fortschritte Der Statistik-Software 2, Stuttgart: Gustav Fischer Verlag, pp. 278–287.

Whittaker, J. (1990), Graphical Models In Applied Multivariate Statistics, Chichester: Wiley.

