A Reusable 3D Visualization Component for the Semantic Web

Alessio Bosca*
Politecnico di Torino, Italy
Simone Grega®

Universita’ degli studi di Milano-Bicocca

Abstract

Ontology visualization and exploration is not a trivial task as many
issues can affect the effectiveness of interactions. As ontologies are,
in the general case, quite connected graphs where concepts are the
nodes and semantic relationships the edges, the problems include
space allocation, edge superposition, scene over-crowding, etc.

In this paper we propose a solution for the visualization and the ex-
ploration of ontologies using a 3-dimensional space, where infor-
mation is represented on a 3D view-port enriched by visual cues.
Our visualization tool aims at tackling representation issues of on-
tology models (as space allocation or the completeness and read-
ability of displayed information) by adopting different views, at
different granularities, in order to grant a constant navigability of
the rendered model. Each provided view represents semantic infor-
mation according to a different, task-based visualization paradigm,
at a suitable level of detail.

Besides being primarily implemented as a Protégé plug-in, the pro-
posed solution (named OntoSphere3D) is designed to be a reusable
visualization component within Semantic Web applications; in fact,
every scene can be exploited as a standalone facility that provides
access to ontological data through an intuitive and appealing 3D
interface. A case-study, is presented, where re-usability is demon-
strated by integrating the OntoSphere3D visualization inside an
Eclipse-based tool for Web Service design (called Web Services
Design Tool) developed by some of the authors in the context of
another research project.

CR Categories: 1.6.9 [Information Visualization]: Visualiza-
tion techniques and methodologies—;[.2.13 [Knowledge model-
ing]: ;— [1.2.13]: Ontology languages—;

Keywords:
Visualization

3D graphics, Semantic Web, Ontology Exploration,

1 Introduction

As nowadays Semantic Web Technologies are constantly evolving
to an ever-increasing maturity, a developer can start to seriously
consider the opportunity to provide semantically tagged content,

*e-mail: alessio.bosca@polito.it
fe-mail: dario.bonino@polito.it
fcomerio@disco.unimib.it
$e-mail: grega@disco.unimib.it
Ifulvio.corno@polito.it

Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions @acm.org.

Web3D 2007, Perugia, ltaly, April 15-18, 2007.

© 2007 ACM 978-1-59593-652-3/07/0004 $5.00

89

Dario Bonino'
Politecnico di Torino, Italy

Marco Comerio*
Universita degli studi di Milano-Bicocca
Fulvio Corno
Politecnico di Torino, Italy

being the needed standards and tools already available. However,
the current web panorama shows a very little adoption of semantics
in contrast with the considerable added value that can be achieved.
The reasons for such a poor exploitation can be various as different
aspects are involved: technology immaturity, failing dissemination,
user and developer reluctance to changes, etc.

In the sea of possible failures and shortcomings, interfaces play a
relevant role, often discriminating good solutions from bad ones.
This is especially true for tools related with knowledge modeling
and visualization, where the involved information can be complex
and can involve multidimensional issues. In particular, the cardinal-
ity of the involved information, (i.e., the very large amount of con-
ceptual entities that are usually encompassed by a formal model)
strongly impacts the scenario and requires countermeasures to keep
tools interfaces usable.

De facto interfaces for knowledge modeling (i.e. for ontology cre-
ation and visualization) already exist, such as Protégé and OntoEdit,
which are complete IDEs that address in a single application all
the aspects related to ontology creation, checking and visualization
(through proper plug-ins). These tools, although adopting rather
different paradigms for editing, visualizing and inspecting ontolo-
gies, have in common a 2-dimensional approach to ontology vi-
sualization. Visualizing knowledge in two dimensions is a chal-
lenging task, since many dimensions are involved: instances, con-
cepts, hierarchical relations just for naming a few. 2D approach is a
well studied paradigm that already produced good solutions (such
as: GraphViz, Jambalaya, OntoViz, etc), nevertheless, mapping the
many dimensions involved by an ontology on only two dimensions
can sometimes be too restrictive.

In this paper we propose a solution for the visualization and the ex-
ploration of ontologies using a 3-dimensional space, where infor-
mation is represented on a 3D view-port enriched by visual cues.
The approach aims at tackling visualization issues for ontology vi-
sual models by adopting a dynamic collapsing mechanism and dif-
ferent views, at different granularities in order to grant a constant
navigability of the rendered model.

A preliminary description of the work has been presented in [Bosca
and Bonino 2006] and the innovation of proposed work consists in
the enhancement of the visualization capabilities through the full
support and graphical representation of the OWL logic constraints
(restrictions, cardinalities, disjointness) along with the introduction
of animations within scene interchanges in order to preserve a co-
herent contextual perception for users. Another major innovation
consists in the reorganization of the internal architecture of the tool
to allow its reuse as visualization facility for applications, provid-
ing access to ontological data through an intuitive and appealing 3D
interface. In other words, besides being implemented as a Protégé
plug-in, Ontosphere3D also aims at being a reusable visualization
component within Semantic Web applications. An effective inte-
gration with the Web Services Design Tool is presented as a case-
study.

The paper is organized as follows: Section 2 presents relevant re-
lated works. Section 3 introduces the main issues in visualizing
ontological data and provides a description of the tool analyzing

(A) (B)

Figure 1: TreeViews: indented (A), nodes and arcs (B), TreeMap
(C).

the various solutions designed for conveying information in more
efficient ways. Section 4 introduces the case-study and details how
the visualization tool can be integrated within an external applica-
tion. Eventually section 5 concludes the paper and proposes some
future works.

2 Related Works

The issue of visually representing abstract information is not new;
relevant backgrounds for our work can be found in the field of Infor-
mation Visualization as well as in best practices techniques adopted
by existing solutions for ontology representation.

Information Visualization [Schneiderman 1999] (p.7) is defined as
”the use of computer-supported, interactive, visual representation
of abstract data to amplify cognition”, therefore research activi-
ties within such field investigate the mapping of data records and
attributes onto a visual representation, capable of enhancing and
easing user understanding of presented information. Without any
obvious spatial mappings or visible form, the challenge of visual-
izing abstract information consists in determining effective visual
representations and interaction schemes for human analysis and ex-
ploration. In the scope of our project the work of Nicholas Polys,
[et al. 2005] (p159-160), assumes a particular relevance as it pro-
poses the use of different representations and interaction techniques
for different data types and task and such principle is one of the core
strategies of our approach.

The existing techniques for the visualization of ontologies can be
summarized in four main visual schemes, possibly cooperating in
more complex scenarios: network, tree, neighborhood, and hy-
perbolic. The network view represents an ontology as a generic
network of connected elements and is usually exploited when the
knowledge elements cannot be conveniently organized in hierar-
chies. The tree (or hierarchical) view, instead, is generally used
for more structured ontologies. However, the simple hierarchical
representation provided by this view is unable to represent con-
nections between distinct sub-trees that violate the dominant tax-
onomic structure. In such a case, the connections violating the hi-
erarchy are indicated in separate views, so complicating the navi-
gation of the structure. The most common examples of tree views
are based on indentation, as in file system browsers, or on diagrams
with nodes and arcs. However, a tree-map view has also been pro-
posed by Schneiderman [Shneiderman 1992], at the Maryland Uni-
versity, which uses nested rectangles to represent sub-classes (Fig-
ure 1, C).

The main advantage of tree views is that they can be displayed
with rather little effort in comparison with network-oriented views.
More importantly, entire sub-trees can be easily collapsed (i.e.,
temporarily hidden) to concentrate the attention on the rest of the
knowledge base. The next two schemes apply similar principles on

90

Figure 2: Neighborhood View (A), Hyperbolic View (B).

network-based structures: in fact, both the neighborhood and the
hyperbolic views (Figure 2) focus the attention on a chosen node
and its nearest neighbors. In the former case only the semantically
nearest nodes are displayed, whereas in the latter case the nodes are
displaced onto a semi-spherical surface, projected onto the visual-
ization area, therefore magnifying the central nodes while shrinking
the peripheral nodes.

The aforementioned representation schemes have been utilized in
numerous applications with assorted enhancements.

Protégé [Knublauch 2003] has been developed by Stanford Medi-
cal Informatics at the Stanford University School of Medicine. It is
intended as editor for general knowledge base systems. In Protégé,
functionalities and visualization capabilities depend on the installed
plug-ins, therefore it is quite difficult to perform a comparative anal-
ysis with the other tools available. It can only be observed that
Protégé is, in general, more suited for advanced users as profound
knowledge about ontologies is required and knowledge of descrip-
tion logic is recommended because a lot of interface elements are
more or less related to logics notation. Protégé natively allows the
interactive creation and visualization of classes in a hierarchical
view. Each concept in the tree can be displayed along with ad-
ditional information about the related classes, properties, descrip-
tions, etc., which can all be quickly edited. Other panels manage
class instances, alternative user interfaces, queries, and possibly
other extensions which can be easily added to the framework as
plug-ins. Particularly, various plug-ins are available for Protégé in
order to enhance the visualization of the ontology and are therefore
here discussed.

The OntoViz [OntoViz]| plug-in displays an ontology as a graph
by exploiting an open source library optimized for graph visualiza-
tion [Gansner and North 1999]. Intuitively, classes and instances
are represented as nodes, while relations are visualized as oriented
arcs. Both nodes and arcs are labelled and displaced in a way that
minimizes overlapping, but not the size of the graph. Therefore, the
navigation of the graph, enhanced only by magnification and pan-
ning tools, does not provide a good overall view of the ontology, as
the graphical elements easily become indistinguishable. OntoViz
supports visualization of several disconnected graphs at once. The
users can select a set of classes or instances to visualize. OntoViz
generates graphs that are static and non-interactive which makes
it less suitable for the visualization of large ontologies. TGViz
[TGVizTab], similarly to OntoViz, visualizes Protégé ontologies
as graphs. In this case however, the displacement of nodes and arcs
is computed using the spring layout algorithm implemented in the
Java TouchGraph library [TouchGraph].

This problem is less critical in Jambalaya [Storey 2001; Jamabalaya
1, another ontology viewer for Protégé, based on a tree-map scheme
or rather nested interchangeable views, namely Simple Hierarchical
Multi-Perspective (SHriMP). SHriMP is a domain-independent vi-
sualization technique designed to enhance how people browse and
explore complex information spaces.An animated view of the on-
tology graph facilitates the navigation and browsing at different lev-

els of abstractions and details, both for classes and relations, while
keeping low the learning curve through well-known zooming and
hypertext link paradigms. However, text labels and symbols tend to
overlap when the ontology grows in complexity and it is difficult to
understand the relations among classes or instances.

OWLViz [OWLViz Tab] is a Protege plugin that visualizes the
schema hierarchy, based only on the subclass relationship. OWLViz
allowins comparison of the asserted class hierarchy and the inferred
class hierarchy. OWLViz integrates with the Protege-OWL plugin,
using the same colour scheme so that primitive and defined classes
can be distinguished, computed changes to the class hierarchy may
be clearly seen, and inconsistent concepts are highlighted in red.
OWLViz has the facility to save both the asserted and inferred views
of the class hierarchy to various concrete graphics formats includ-

ing png, jpeg and svg.

The Visualizer plug-in of OntoEdit [OntoEdit ; Sure et al. 2002]
proposes a bi-dimensional graph-based view of the ontology using
colored icons as nodes accompanied by contextual tooltips, such
as colored borders or spots other than the usual labels. However,
in the resulting view both concepts and properties are represented
as vertices, which can sometimes result confusing. Furthermore,
graph lay-outing is done automatically and does not permit vertices
re-allocation through dragging. As a consequence, the only pos-
sibility to browse the graph is by navigating the structure starting
from the “root” node.

IsaViz [IsaViz] is another graph-based visualization tool for RDF
models based on the GraphViz library. In this case, the princi-
pal enhancement to the previously mentioned approaches based on
graphs is the Radar View, which, similarly to Jambalaya, displays
a simplified network overview of the overall ontology in a small
window, highlighting the currently edited region in a rectangle. In
addition, icons and colors are also exploited to concentrate informa-
tion, while different visualization styles and layouts are supported
through the GSS (Graph Style Sheet) language, derived from the
well-known CSS (Cascading Style Sheet and SVG (Scalable Vector
Graphics) W3C recommendations. However, it is still not possible
to customize the level of details for big ontologies.

OntoRama [OntoRama] is an ontology browser for RDF models
based on a hyperbolic layout of nodes and arcs. As the nodes in
the center are distributed on more space than those near to the cir-
cumference, they are visualized with a higher level of detail, while
maintaining a reasonable overview of the peripheral nodes. In ad-
dition to this pseudo-3D space, OntoRama also introduces the idea
of cloned nodes in order to reduce the number of crossed arcs and
enhance the readability. The duplicate nodes are displayed using
an ad-hoc color in order to avoid confusion. Unfortunately, this ap-
plication does not support editing and can only manage RDF data.
Many other tools are available and an exhaustive comparison be-
tween them (including the ones described in this paper) is available
at [Survey].

3 OntoSphere3D

3.1 Ontology Visualization Issues

Ontology visualization implies abstracting from the formalism of
the underlying data and graphically modeling the information con-
tained in a given knowledge base. Independently from the ap-
proach adopted, visualizing complex graph structures like ontolo-
gies presents strong completeness and readability issues, which be-
come more and more important as the number of nodes increases.
Displaying a great amount of items at the same time on the screen

91

worsens, in fact, the graphical perception of the scene and com-
plicates spotting details, requiring users to autonomously extrap-
olate information from a chaotic assortment of data. This has to
be avoided in every user-centered application, and in particular in
knowledge management systems that, instead, shall support easy
organization and representation of information meaning. In order to
properly present data, a successful visualization strategy shall ad-
dress completeness and readability issues. Completeness requires
to visually represent all the relevant information associated to a
given element of the model, while readability enforces a clear and
easily interpretable presentation of data. In general terms, a visu-
alization strategy shall find a possibly optimal, dynamic trade-off
between completeness and readability and shall favour a display
scheme instead of another depending on inferred user needs.

In the ontology representation domain, strategies are varied and
share the common feature of representing data on a 2-dimensional
view-port. OntoSphere3D, instead, uses a 3D space as a means to
represent and explore data more effectively. Adopting a 3D repre-
sentation space, in facts, offers several advantages: at first, it im-
plements a natural perspective for human beings and, at second, it
offers an additional dimension along which organizing data to be
displayed. Moreover, a 3D space, implicitly carries a “focus” infor-
mation, through space allocation. This means that objects located
in a 3D environment can be dynamically moved to the fore or in
the background and such opportunity offers a further instrument to
emphasize and highlight some elements with respect to others. The
targets of inspection are naturally placed closer to the viewer and
increased in size, while others elements are kept on the scene but
their presence is reduced and veiled thus not interfering with user
attention.

3.2 Visualization Strategies: Views and Visual Cues

OntoSphere3D tackles completeness and readability issues exploit-
ing two different representation principles:

e To increase the number of “dimensions” (colors, shapes,
transparency, etc.) which represent concepts features and con-
vey additional information without adding the burden of fur-
ther graphical elements, such as labels, on the scene.

e To automatically select which part of the Knowledge Base has
to be displayed and the detail level that has to be used in the
process, on the basis of user interaction with the scene.

Color is used to differentiate elements as it increases the amount
of information that can be integrated into the visual representa-
tion, creating different layers of information. In the is-A hierar-
chies different colors are used for visually grouping different levels;
the white color identifies a collapsed element while the black indi-
cates the focus. The green instead is the base color for incoming
relations, red for the outgoing ones and datatype properties are de-
picted in blue. Furthermore, through the relations contextual menu,
users can specify custom colors for specific relations they want to
“highlight”. The size of an element intensifies/weakens its presence
and impact within the scene, as in collapsed nodes where the size
grows with the number of subsumed / aggregated entities; similarly,
in arrowhead cones the size grows with the number of relations.
Transparency increases the “abstraction” of a feature or highlights
the presence of a hidden feature. In fact it marks the presence of
instances and differentiates inherited relations from the direct ones.
Finally it lessens the burden within the scene of default structural
elements (as is-A relations in a tree view).

The dynamic selection of the elements to represent is a particu-
larly important feature for improving overall system performances,

since scale factor constitutes a strong issue in visualizing ontolo-
gies.In order to fulfill such principle, OntoSphere3D exploits dif-
ferent scene managers that present and organize the information on
the screen, each one according to a differently detailed perspec-
tive. The idea behind such approach is that different tasks demand
different amounts of information and different presentations, em-
phasizing certain features of data and omitting the others. Each
ontology feature is made accessible and can be visualized exploit-
ing a focusing mechanism that, on the basis of user interaction with
the graphical elements, allows shifting from high-level pictures to
more detailed representations.

3.3 Architecture Overview

3vax. Swing
JPANEL

Ontology
Abstraction

Internal
@gj‘/\odel
: /{ferpret

+ o On‘co}ogy

Universe

current scene

Figure 3: Architecture Overview

The architecture of the tool ideally conforms to the Model View
Controller (MVC, see [Reenskaug 1979]) design pattern, typical of
Web Applications domain. MVC predicates the separation between
the model, holding the domain information, and its presentation.
Therefore changes to the user interface don’t impact data handling,
and data can be reorganized without changing the user interface.
The MVC design pattern solves this problem by decoupling data
access and business logic from data presentation and user interac-
tion through the introduction of an intermediate component: the
Controller. This component is charged of event handling, typically
user actions; it coordinates the presentation of the different views
and may invoke changes on the model.

Ontosphere3D implements such design pattern by using an inter-
nal representation of model that depends on an ontology abstrac-
tion layer, and different graphical scene managers that presents the
information at different detail levels, each according to its own
strategy. The role of the controller in the tool is played by the
Pane3DScene component that loads the ontology model and hosts
the 3D canvas where the different scene managers represent the in-
formation. The controller also manages the scene manipulation be-
haviors and controls the scene transition animations that organize
the flow of elements on the screen between two different visualiza-
tion schemes.

3.4 User Interface

The OntoSphere3D user interface is quite simple, mouse centered,
and supports scene manipulation through rotation, panning and
zoom. It is strongly bound to the “one hand” interaction paradigm,
allowing to browse the ontology as well as to update it, or to add
new concepts and relations (thanks to the integration in the Protégé

92

framework). Furthermore, an intuitive navigation interface, featur-
ing direct manipulation of the scene allows domain experts, who
have little technical skills in the field of Semantic Web, to graphi-
cally explore ontology components and interact with them.

T T Left click on

o a concept =<

L4
\‘ ! - .
Right click on

a concept - contextua
menu

= ~ S AN
“ 4 % Leftclick on . F : e
Fi % an instance S g -
i - g

Figure 4: Scenes Interactions

Left click on
a concept

Ontology elements are represented as follows: concepts are shown
as spheres, instances are depicted as cubes, literals are rendered as
cylinders and the semantic relationships between entities are sym-
bolized by arrowed lines. Together with shapes, colors and sizes
are used to convey additional information on the elements within
the scene. Concepts and instances are click-able: left clicks per-
form a focusing operation, shifting the currently visualized scene
to a more detailed view; central clicks are used to expand/collapse
elements, while right clicks open a contextual menu offering a set
of alternatives that depends on the element properties.

Relations as well can be clicked; in particular, a left clicks shows
a textual representation of the relation properties and constraints
(as cardinality) while a right clicks offer a proper contextual menu.
Whenever a relations has a cardinality constraint it is represented
with a squared section, otherwise it is round.

Manipulation of the whole scene instead occurs through the inter-
action with the background: left-clicking and moving the mouse
cause the scene to rotate, pressing central button and shifting the
cursor translates the scene and the mouse-wheel controls the zoom.
A certain degree of scene personalization in terms of sizes of graph-
ical components, distances between them and colors is supported
through a proper option panel.

Scenes interchange in managing the graphical space as user atten-
tion shifts from one concept to another, being the attention focus
implicitly inferred from user’s interaction with the scene (e.g., a
concept selection with a mouse click, see Figure 4). Simple ani-
mations guides the transitions through scenes in order to maintain
a coherent perception of the information for users. Four different
scenes are available: a main scene, a tree-focus scene, a concept-
focus scene and a couple of instance-focus scene; they are explained
in the following subsections.

3.4.1 Main Scene

This perspective constitutes the main scene of OntoSphere3D and
the starting point for ontology inspection; it presents a big “earth-
like” sphere bearing on its surface a collection of concepts repre-
sented as small spheres (see Figure 5). No taxonomic information
is visualized in this representation, which only shows direct “se-
mantic” relations between elements, usually a graph not fully con-
nected. Atomic nodes, the ones without any subclass, are smaller
and depicted in blue while tree-root nodes are colored in white and
their size is proportional to the number of elements contained in
their own sub-tree. The main scene, constitute the starting point in
ontology inspection as it represents the ontology primitives (i.e. the

Frocess

- A ‘-".:

StatefPraw

5

Figure 5: mainScene

root concepts) so depicting the conceptual boundaries of the do-
main and providing a very good hint to the question: “what’s the
ontology about?”.

3.4.2 Exploring sub-Branches

DamainConcept

Figure 6: Tree Focus Scene

The scene (see Figure 6) shows the sub-tree originating from a con-
cept, along the Is-a relation. It displays the predominant hierarchi-
cal structure as well as other semantic relations between classes.
Since use evidence proves that too many elements on the screen at
the same time, hinder user attention, the scene completely presents
only three fully-expanded levels at a time. While the user browses
the tree, the system automatically performs expansion and collaps-
ing operations in order to maintain a reasonable scene complexity.

Collapsed elements are colored in white and their size is propor-
tional to the number of elements present in their sub-tree. Concepts
located at the same depth level within the tree have the same color in
order to easily spot groups of siblings. Is-a relations are displayed
with a neutral color (gray) and without label, whereas other seman-
tic relations are colored. Whenever a relation is directed toward a
node not present on the scene, a placeholder for that node is added
in the proximity of the given element. No inherited properties or
logical constraint are presented in this view

93

3.4.3 Focusing on a Concept

This perspective depicts all the available information about a sin-
gle concept, at the highest possible level of detail (Figure 7). It
reports the concept’s parent(s) and its ancestor(s) and the seman-
tic relations in which it is involved, both the ones specifically de-
clared for the given concept and the ones inherited from ancestors.
Semantic relations are drawn as arrows terminating in a small 3D
iconic element representing the range. Direct relations are drawn
close to the concept and with an opaque color, while inherited ones
are located a bit farther from the center and depicted with a fairly
transparent color. Besides structural information, the scene reports
as well the logical constraints expressed on the class as disjoints
elements, logical restrictions (cardinality, universal and existential
quantifiers) or anonymous super-classes (as intersections, enumer-
ations or unions..). These constraints are also used by the tool in
order to filter out the inherited relations that has been redefined at
a more specific level or the ones that don’t comply to such con-
straints. The aim in fact is to provide all the relevant information
filtering out the rest. This scene is pretty useful during consistency
checking operations because it eases the spotting of inconsistent
concepts or relations, e.g. whenever a concept inherits from an an-
cestor a property that “conceptually” contrasts with other features
of its own.

Realltalianpj :

Itsty ThinAndCrispyBase

DISJOINT WWITH (Amerscan, Cajun, Amentantol)

PizzaTopping

Figure 7: Concept Focus Scene

3.4.4 Exploring Instances

Whenever a concept has direct instances (in the tree focus scene
or in the concept focus scene) its sphere is depicted surrounded
by a translucent sphere, similar to a shell (see Figure 6, A). Di-
rect instances, as well the whole set of instances within the sub-tree
originating from the concept, can be visualized by right-clicking on
this shell-surrounded concepts. Inspection of instances can be done
using three scenes: the first, reachable through the right-click on
concepts surrounded by a ”*halo’’, follows the main scene visual-
ization paradigm (representing instances as cubes on the surface of
a bigger sphere) and simply list a set of individuals. White cubes
represent instances related with other entities while blue ones are
simple, unconnected nodes. The second scene presents the graph
of facts relative to a given instance and the adopted visualization
strategy is similar to the Concept Focus Scene, representing related
instances as a interconnected cubes (see Figure 8, B). The third
scene instead a dependency tree originating in a given instance and
insisting on a previously selected relation.

Figure 8: (A) Instances Focus Scene (B) Facts Focus Scene

4 WSDTool: an integration case study

The Web Services Design Tool (WSDTool) [Comerio et al. 2007b]
has been developed in order to allow the different actors (project
leader, software designer, business expert and domain expert) in-
volved in Web services design to define and address quality require-
ments. WSDTool provides a graphical interface aiming at support-
ing ontologies management and modelling activities. The tool has
been implemented as an Eclipse plug-in [Eclipse 2005] to primarily
guide the execution of the Web Services Modelling Design (WS-
MoD) methodology [Comerio et al. 2007a].

The WSMoD approach consists in incorporating and refining non
functional properties (NFP), as well as functional requirements,
along the Web service design process. The advantage of managing
NFP is twofold: achieving at the end of the process, a ready-to-
implement specification, and reducing the risk of delivering unsat-
isfactory services. In fact, the knowledge of the technical, organi-
zational and social characteristics of the environment in which the
service will be deployed, allows the designer to effectively evaluate
and tailor the service specifications.

WSMoD makes use of ontologies in order to understand, discover,
classify and reason on NFPs that are related to user constraints,
preferences, technological features (such as devices and networks),
and domain peculiarities. Ontologies provide a description, classi-
fication and characterization of services, context (user and channel
characteristics) and Quality of Service (QoS). WSMoD therefore
uses ontologies in order to provide a formal organization of the
knowledge that can be exploited to rationalize the process of de-
cision and evaluation.

The WSMoD methodology (see Fig.9) is composed of five main
phases. The Service Identification phase specifies, from a business
point of view, the features the service will offer, and the business
constraints. This phase produces a complete, informal specification
of functional and non-functional requirements. Then, the functional
requirements are the input of the Service Modelling phase, that has
the goal of defining the functional model of the Web Service. The
non-functional requirements and the functional model are inputs of
the High-Level Re-Design phase, whose goal consists in revising,
and possibly changing, the functional model in order to include
non-functional requirements as well. The next phase, Customiza-
tion, revises the current design model by considering a possible
context of execution. Finally, the Web Service Description phase
translates functional models obtained into standard WSDL inter-
faces, augmented with quality descriptions in WSOL [Tosic et al.
2002].

To support the execution of these phases, WSDTool provides differ-
ent functionalities (e.g., service modelling, QoS evaluation, etc...)
embedded in specific panels. In particular, the tool supports ontol-
ogy management (i.e., import, navigation and editing of ontologies)

94

Conceptual % (User Roles and
Channels "‘----.h_‘ ',/' Business Processes)
Services |dentification
Functional Reg its |
Actual +
Services ~| Service Modeling
T Actual New Non-
Service Service Functional
gL Modeling Modelin Requirements
Class Diagrams Functional UML Diagrams
i
High-Level Re-Design| User
t
Data and Interaction Requyerpents
Operation c
Design Design

'Specification of

Specification of Logical Channels

Technological e

Channels Customization

\ _User Profiles
Channel User i
Ci n Customization

Provid}s’er' -
Technological s Ur-,iL'Dlagrams
Requlremenlal Web Service Description]

wsouwsb]_ Documents ———

| Implementation and Deploy |

Figure 9: WSMoD methodology

using the facilities provided by the OntoSphere3D tool. The Onto-
Sphere3D component has been integrated in the WSDTool Eclipse
plugin and the different graphical scenes, described in Section 3,
can be directly visualized within WSDTool components in order to
guide the different actors along the Web services design. In order
to perform this integration, two problems have been tackled:

1. Ontosphere3D has been implemented with the Abstract Win-
dow Toolkit (AWT) while Eclipse uses the Standard Widgets
Toolkit (SWT);

2. the different scenes provided by OntoSphere3D must be auto-
matically visualized and updated along the design process.

The solution adopted to solve the first problem consists in the use
of an eclipse package (org.eclipse.swt.awt) that allows a bridge
among these two types of graphical libraries using a class named
SWT_AWT. In particular, this class provides support for embedding
AWT widgets within SWT composites and vice versa.

The second problem instead has been solved exploiting the API
provided by the OntoSphere3D tool. WSDTool, in fact, holds an
internal representation of the ontology model and accesses the dif-
ferent scene managers in order to provide the desired visualization.
The tool, with respect to the architecture described in 3, substitutes
the Panel3D in managing the different views and provides inter-
faces tailored to the different phases of the Web services design.

This integration evidences the possibility to use OntoSphere3D as
a reusable component with little efforts in terms of code customiza-
tion and without constraints in supporting the native 3D graphical
implementation.

OntoSphere3D interface is mainly used in order to support the ex-
ecution of the Service Identification phase. In fact, business ex-
perts involved in this phase use the ontologies to: (i) classify the
new service in the proper service category according to its func-
tional requirement; (ii) discover non-functional properties of the
selected category; (iii) create the new service instance. The effec-
tiveness of the OntoSphere3D along the execution of this phase has

X Vet | ko vt | i Evshastion | M Savvice Etie

Intemet_Service

saglity_FlexSond

gbility_FlaxSend

Service_Periggmance FlexSend

Figure 11: Instance of the FlexSend service

been evaluated with a case study: the design of a notification ser-
vice, FlexSend, that delivers messages over different channels ac-
cording to specific receivers contexts (preferences, device, activity).
More details about such case study can be found in [Comerio et al.
2007a].

The Service Identification phase starts with the definition of the
FlexSend functional requirements and the simultaneous creation of
a UML use-cases diagram. Afterwards, the phase proceeds with the
identification of the category that FlexSend shall belong to. Busi-
ness experts, in fact, browse the service ontology in order to identify
the most suitable category and to create the new instance. Starting
from the Main Scene it is then possible to select the Internet Service
category and visualize its sub-tree as shown in Fig.10.

Once FlexSend category has been individuated as Message Deliv-
ery Service, users can visualize its properties at a higher detail level
with the Concept-Focus Scene. In particular, OntoSphere3D allows
users to easily notice that each service included in the Message De-
livery Service category is characterized by a set of QoS inherited
from parent categories (e.g., Service Usability from Internet Ser-
vice). Moreover, the tool underlines that each Message Delivery
Service is influenced by the network and the device on which it is
delivered.

After the service categorization, business experts investigate the
availability of concrete services that (partially or totally) satisfy the
functional and non-functional requirements of FlexSend, in order to

95

reuse them within the design process. Users can perform this oper-
ation by simply inspecting the different instances of the selected
category; OntoSphere3D facilitates such activity by highlighting
concepts with at least one instance and surrounding them with a
transparent “halo”. Fig.10 shows that no instances are available,
therefore the design of a new service is required.

The creation of FlexSend service is performed using the new service
editor. The editor allows business experts to specify FlexSend as an
instance of Message Delivery Service and to exploit OntoSphere3D
features in order to perform the following steps: (i) inheritance
of all the qualities related to Message Delivery Service category;
(ii) possibility of changing this QoS list removing or adding new
quality requirements; (iii) specification of constraints that FlexSend
must fulfil; (iv) specification of influences of context characteristics
(e.g., conceptual devices, networks, etc...).

After its creation, FlexSend appears as an instance of the Message
Delivery Service category within the service ontology, therefore, it
is possible to visualize its features. In particular, the Instance-Focus
scene allows business experts to easily locate all non-functional
properties linked to FlexSend during the editing operations. More-
over, it is possible to select one specific property and (with a right
click) visualize the dependency tree originating in that instance. For
example, the figure 11 shows the sub-tree obtained selecting has
quality as property of interest.

5 Conclusions

This paper presented some enhancements of the OntoSphere3D
plug-in which allow, from one side a better support to the visual-
ization of complex ontology constructs (OWL restrictions, cardi-
nality constraints,...) and, from the other side a better integrability
into other applications. A real world case study has been presented,
which shows the adoption of the presented visualization system into
a Web Service Design Tool developed by some of the authors. The
paper is mainly focused on the architectural and integration issues,
while the extensive experimentation of the tool usability is currently
being performed and will constitute the basis for possible future
works.

References

BOSCA, A., AND BONINO, D. 2006. Ontosphere3d: a multidi-
mensional visualization tool for ontologies. In 17th International
Conference on Database and Expert Systems Applications-
DEXA 2006, 5th International Workshop on Web Semantics
(WebS 2006).

COMERIO, M., DEPAOLI, F., GREGA, S., MAURINO, A., AND
BATINI, C. 2007. Wsmod: A methodology for qos-based web
services design. International Journal of Web Services Research.

COMERIO, M., DEPAOLI, F., AND Viscusi, G. 2007. An on-
tology management tool for qos-based web services design. In
Proc. of WEBIST (International Conference on Web Information
Systems and Technologies) 2007 .

ECLIPSE, 2005. Eclipse platform technical overview. http://
www.eclipse.org/articles/whitepaper-platform-3.
1/eclipse-platform-whitepaper.html.

ET AL., V. G. C. C. 2005. Visualizing Information Using SVG and
X3D. Springer-Verlag.

GANSNER, E. R., AND NORTH, S. C. 1999. An open graph vi-
sualization system and its applications to software engineering.
Software Practice and Experience 30, 11, 1203—-1233.

ISAVIZ. A visual authoring tool for rdf.
http://wuw.w3.0org/2001/11/IsaViz/.

JAMABALAYA.
http://www.thechiselgroup.org/chisel/projects/
jambalaya/jambalaya.html.

KNUBLAUCH, H. 2003. An ai tool for the real world: Knowledge
modeling with protégé. JavaWorld.

ONTOEDIT.
http://wuw.ontoknowledge.org/tools/ontoedit.
shtml.

ONTORAMA. http://www.ontorama.com/.

ONTOVIZ. Ontoviz tab: Visualizing protégé ontologies.
http://protege.stanford.edu/plugins/ontoviz/
ontoviz.html.

OWLVIz TAB. http://wuw.co-ode.org/downloads/
owlviz/.

REENSKAUG, T., 1979. Models - views - controllers. Technical
note, Xerox PARC, December 1979. A scanned version on
http://heim.ifi.uio.no/~trygver/mvc/index.html.

SCHNEIDERMAN, S. C.J. M. B. 1999. Information Visualization:
Using Vision to Think. Morgan Kaufmann.

SHNEIDERMAN, B. 1992. Treemaps for space-constrained visu-
alization of hierarchies. ACM Transactions on Graphics (TOG)
11,1,92-99.

STOREY, M. A. 2001. Interactive visualization to enhance ontol-
ogy authoring and knowledge acquisition in protégé. In Work-
shop on Interactive Tools for Knowledge Capture, Victoria, B.C.
Canada.

SURE, Y., ERDMANN, M., ANGELE, J., STAAB, S., STUDER,
R., AND WENKE, D. 2002. OntoEdit: Collaborative ontology
development for the semantic web. In Proceedings of the first
International Semantic Web Conference 2002 (ISWC 2002), June
9-12 2002, Sardinia, Italia., Springer, LNCS 2342.

SURVEY, O. E. http://wuw.xml.com/2002/11/06/
Ontology_Editor_Survey.html.

TGVI1zTAB. A touchgraph visualization tab for protégé 2000.
http://www.ecs.soton.ac.uk/ha/TGVizTab/TGVizTab.
htm.

TosIc, V., PATEL, K., AND PAGUREK, B. 2002. Wsol - web ser-
vice offerings language. In CAISE '02/ WES ’02: Revised Papers
from the International Workshop on Web Services, E-Business,
and the Semantic Web, Springer-Verlag, London, UK, 57-67.

TOUCHGRAPH. http://touchgraph.sourceforge.net/.

96

